Morphological Characteristics

<table>
<thead>
<tr>
<th>No.</th>
<th>Variable</th>
<th>Symbol</th>
<th>Units</th>
<th>Existing Channel</th>
<th>Reference Reach</th>
<th>Proposed Reach</th>
<th>As Built</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Drainage area</td>
<td>DA</td>
<td>mi²</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Riffle bankfull width</td>
<td>W<sub>bkf</sub></td>
<td>feet</td>
<td>Mean</td>
<td>Range</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Riffle bankfull mean depth</td>
<td>d<sub>bkf</sub></td>
<td>feet</td>
<td>Mean</td>
<td>Range</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Riffle bankfull cross sectional area</td>
<td>A<sub>bkf</sub></td>
<td>ft²</td>
<td>Mean</td>
<td>Range</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Bankfull mean velocity</td>
<td>V<sub>bkf</sub></td>
<td>ft/sec</td>
<td>Mean</td>
<td>Range</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Bankfull discharge</td>
<td>Q<sub>bkf</sub></td>
<td>cfs</td>
<td>Mean</td>
<td>Range</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>Riffle bankfull maximum depth</td>
<td>D<sub>max</sub></td>
<td>feet</td>
<td>Mean</td>
<td>Range</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>Width of flood prone area</td>
<td>W<sub>fpa</sub></td>
<td>feet</td>
<td>Range</td>
<td>Mean</td>
<td>Range</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>Meander length</td>
<td>L<sub>m</sub></td>
<td>feet</td>
<td>Mean</td>
<td>Range</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>Radius of curvature</td>
<td>R<sub>c</sub></td>
<td></td>
<td>Mean</td>
<td>Range</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>Roughness coefficient</td>
<td>n</td>
<td></td>
<td>Mean</td>
<td>Range</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>Belt width</td>
<td>W<sub>blt</sub></td>
<td>feet</td>
<td>Mean</td>
<td>Range</td>
<td></td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>Sinuosity</td>
<td>K</td>
<td></td>
<td>Mean</td>
<td>Range</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Continued on next page
Required Data (Proposed)

Morphological Characteristics (continued)

<table>
<thead>
<tr>
<th>No.</th>
<th>Variable</th>
<th>Symbol</th>
<th>Units</th>
<th>Existing Channel</th>
<th>Reference Reach</th>
<th>Proposed Reach</th>
<th>As Built</th>
</tr>
</thead>
<tbody>
<tr>
<td>14</td>
<td>Valley slope</td>
<td>S_{val}</td>
<td>ft/ft</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>Average water surface slope</td>
<td>S_{avg}</td>
<td>ft/ft</td>
<td></td>
<td>Mean</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Materials

<table>
<thead>
<tr>
<th>No.</th>
<th>Variable</th>
<th>Symbol</th>
<th>Units</th>
<th>Existing Channel</th>
<th>Reference Reach</th>
<th>Proposed Reach</th>
<th>As Built</th>
</tr>
</thead>
<tbody>
<tr>
<td>16</td>
<td>Particle Size Distribution Channel</td>
<td>D_{50}</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>D_{84}</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Particle Size Distribution Bar</td>
<td>D_{50}</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>D_{84}</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Largest Particle Size</td>
<td>D_{max}</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Morphological Measurements and Ratios: Dimensions

Flood-prone Width (W_{fpa})

Bankfull Width (W_{bkf})

Max Depth (d_{max})

Bankfull Mean Depth (d_{bkf})

CHANNEL DIMENSION MEASUREMENTS

- Riffle Bankfull Width (W_{bkf})
- Mean Riffle Bankfull Depth (d_{bkf})
- Max Riffle Bankfull Depth (D_{max})
- Width of Flood-Prone Area (W_{fpa})
- Wetted Perimeter (channel)

CHANNEL DIMENSION CALCULATIONS

- Width/Depth Ratio (W/D ratio)
- X-Section Area (A_{bkf})
- Hydraulic Radius (R)
- Entrenchment Ratio (ER) = (W_{fpa}/W_{bkf})
- Channel Type
Morphological Measurements and Ratios: Profile

CHANNEL PATTERN MEASUREMENTS
- Meander Length (L_m)
- Radius of Curvature (R_c)
- Belt Width (W_{blt})

CHANNEL PATTERN CALCULATIONS
- Meander Length Ratio (L_m/W_{blt})
- Radius of Curvature Ratio (R_c/W_{blt})
- Meander Width Ratio (W_{blt}/W_{est})
Required Data (Proposed)

CHANNEL PROFILE MEASUREMENTS
- Valley Slope (VS)
- Ave. Water Surface Slope (S)

CHANNEL PROFILE CALCULATIONS
- Sinuosity(k)=(VS/S)

ADDITIONAL CALCULATIONS FROM DATA
- Relative Roughness \(R/D_{84} \)
- Shear Velocity \(u^*=(gRS)^{1/2}; \ g=32.2 \text{ ft/sec}^2 \)
 \(\frac{u}{u^*}=\frac{R}{D_{84}}=\frac{u}{(gRS)^{1/2}}\)
- Roughness Coefficient \(n=1.4865\left(\frac{R^{2/3}S^{1/2}}{u_{b kf}}\right)\)
 \(u_{b kf}=1.4865\left(\frac{R^{2/3}S^{1/2}}{n}\right)\)
 \(Q_{b kf}=W_{b kf} \cdot d_{b kf} \cdot u_{b kf}\)
- Shear Stress \(\tau=\gamma RS; \ \gamma=62.4 \text{ lbs/ft}^2 \)
- Wetted Perimeter (estimated) = \(2 \cdot d_{b kf} + W_{b kf}\)
Additional References

Herrington, R.B., and D.K. Dunham. A Technique for Sampling General Fish Habitat Characteristics of Streams. Intermountain Forest and Range Experiment Station, Ogden, UT.

Wilcock, P.R. Sediment Transport in the Restoration of Gravel-bed Rivers. Dept. of Geography and Environmental Engineering, John Hopkins University, Baltimore, MD.
Useful Web Sites/Pages for Additional Reference Material

Minnesota Department of Natural Resources, Stream Habitat Program
http://www.dnr.state.mn.us/eco/streamhab/about.html

Michigan's Stream Team
www.mi.gov/streamteam

U.S. Forest Service Stream Systems Technology Center
http://www.stream.fs.fed.us/

U.S. Forest Service Stream Team Web Page for Stream Notes Newsletter

Guidelines for Natural Stream Channel Design for Pennsylvania Waterways

North Carolina State University Stream Restoration Program
http://www.bae.ncsu.edu/programs/extension/wqg/srp/

Regional Hydraulic Geometry Curves. Natural Resource Conservation Service
Provides links to various regional curve web sites.
http://www.nrcs.usda.gov/wps/portal/nrcs/detail/national/water/manage/?&cid=nrcs143_015052

University of Louisville Stream Institute
https://louisville.edu/speed/civil/si

U.S. Fish and Wildlife Service, Chesapeake Bay Field Office
http://www.fws.gov/chesapeakebay/stream/

Stream Mechanics
www.stream-mechanics.com